MELDS3:
ALTERNATIVE
TEMPLATING

PRESENTED BY
CHRIS MCDONOUGH
FOR THE 2006 PLONE SYMPOSIUM
NEwW ORLEANS, LA



WHY?

e Why in the name of all that is good and
holy do we need another templating system?

e We don't. I was just avoiding real work.

* I'm sorry.



REASONABLE EXCUSES

[ hate hand-writing XML and HTML.
But I e to write Python.

GUI layout tools like Dreamweaver and
NVU definitely don’t work with non-
XHTML or HTML-compliant templates.

They even seem to ravage ZPT from time to
time.

meld3 provides the possibility of cross-
language template sharing.



HISTORY

Casey Duncan: “Inside-Out ZPT” and
“TAL Inheritance” (proposals)

Richie Hindle: PyMeld
Paul Winkler: Meld2 (prototype)

Procrastination bore meld3.



ISSUES

* meld3 isn’t for everybody. It’s radically
different than ZPT / DTML and others.

* meld3 can only template XML and HTML
(not arbitrary text).



SIMILAR SYSTEMS

e HTMLTemplate / texttemplate (Python)
e XMLC (Java)
e Amrita2 (Ruby)

Interesting to note: some of these templating systems
can share templates across languages.



COMPARING TEMPLATING
PARADIGMS

e “Pull-based” (aka macro-based) systems
like PHP, DTML, ZPT, Kid.

e “Push-based” (aka DOM-based) systems
like meld3.




“PULL-BASED” TEMPLATING

invokes

ulls
Template 8 Python .

>

Pull-based\(aka “macro”) templating systems invoke
Pythen, which operates against data.

tal :define="here/getData”



“PUSH-BASED”’
TEMPLATING

pushes

4 Template

Push-based (aka “DOM-style”) templating systems pulls
data and pushes it into the template.

template.findmeld( ‘replaceme’).replace(‘Hello’)



WHO CARES ABOUT PUSH?

e If you're a designer that works in GUI tools or
you work with a designer, you probably care.

e If you want your customers to be able to edit
your templates without needing to understand
the “programmery” bits, you probably care.

e If you need to share templates across
languages, you probably care.

e If you'd rather write Python than HTML and
XML, you probably care.



WHAT DOES MELD3 LOOK
LIKE?

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rqg/1999/xhtml"
xmlns:meld="http://www.plope.com/software/meld3">
<head><title meld:id="title">This 1is the title</title =
<body> declaration
<table border="0" meld:id="tablel">
<tbody meld:id="tbody">
<tr><th>Name</th><th>Description</th></tr>
<tr meld:1d="tr" class="foo">
<td meld:1id="td1l">Name</td>
<td meld:1d="td2">Description</td>
</tr>
</tbody>
</table>
</body> meld node
</html>




THAT’S IT.

meld3 templates include exactly two things

An xmlns identifier for the meld namespace:

xmlns:meld="http://www.plope.com/software/meld3"

Identitying attributes for “meld nodes”:

meld:1d="td2"



BUT THERE’S NO “THERE”
THERE?

e That’s right. No loops. No conditionals.
No variable definitions. No inline code.
No macros.

e All the hard work is done in Python. @

e We mutate the template definition by
working against the “meld nodes” in the
tree. When we’re done, we serialize the
result.



WITNESS

from meld3 import parse_htmlstring
html = open('sample.html').read()
root = parse_htmlstringChtml)

root.findmeld('title').content('My document')

gatad = ({'name’': 'Boys’',
tdesepiption’ :"Ugly '},
oname ' : "Girls',
‘description’:'Pretty'},)

1terator = root.findmeld('tr').repeat(data)

for element, item in iterator:
element.findmeld('tdl').content(item[ 'name'])
element.findmeld('td2').content(item[ 'description’'])

result = root.write_htmlstring()

print result




RESULT OF SERIALIZING

<head><titlesMy document</titles</heads result of content

<b0dy> \

<tr><th>Name</th><th>Description</th></tr>
e class—"foo">
<td>Boys</td> results Of
<td>Ugly</td>

</trs repeat and

<tr class="foo">
<td>Girls</td> content

<td>Pretty</td>
</tr>

</body>



BUT, BUT..:

[ told you it wasn’t for everybody.



CoMMON APl METHODS

findmeld - find a meld node

repeat - repeat a meld node

replace - replace a meld node

content - replace the content of a meld node
attributes - add attributes to a meld node

fillmelds - fill meld node contents with the
values of a dictionary



ELEMENTTREE API

“meld” nodes are really just ElementTree
nodes “under the hood”.

Any API mechanism supported by
ElementTree “ ElementInterface” nodes
may be used against meld nodes as well.
(e.g. node.text = “foo”)

This means you can access nodes in the tree
without doing “findmeld” but it’'s not
recommended.

Mutation via ET API is OK, though.



FILLMELDS EXAMPLE

e fillmelds is a handy method. It accepts a
keyword list as an argument.

e For each keyword argument, it finds a meld
node in the template with that key, and fills
the content of the meld node with the value
associated with the key.



FILLMELDS EXAMPLE

SIMPLE XML = r"""<?xml version="1.0"?>
<root xmlns:meld="http://www.plope.com/software/meld3">
<list meld:id="1list">
<item meld:id="item">
<name meld:id="name'">Name</name>
<description meld:id="description">
Description</description>

</item>
</list>
Elroot>"""
_ _ replacement
from meld3 import parse xmlstring .
root = parse xmlstring (SIMPLE XML) dict
d = { ‘description’: ‘Duh’, ‘name’: ‘Chris
root.fillmelds (**d) ; print root.write xmlstring()




FILLMELDS RESULT

<?xml version="1.0"7?>
<root> Node content after

e fillmelds
<item>

<name>Chris</name>
<description>Duh</description>
</item>
</list>
</root>




FILLMELDS SHORTCUT

Use the __mod__ operator (%)

element % { ‘description’: ‘foo’}



STRUCTURE DIFFING

* two meld3 templates can be compared via a
 Iructure dift”.

* a “structure dift” displays meld nodes
which have been added, removed, or
moved from one place to another.

e handy for seeing if someone broke your
transform code by changing a template.



STRUCTURE DIFF INPUT

before.xml

<root>
<a meld:id="a">
<b meld:id="b"></b>
<c meld:id="c”"></c>

</a> “b“has
< £>
oo moved
after.xml “c” has been

removed

<root>
<a meld:id="a'"></a>
<b meld:id="b"></b>
</root>



STRUCTURE DIFF OUTPUT

meldditf.py

ships with meld3

[chrism@Roops meld3]$ python melddiff.py \
before.xml after.xml

Removed: c

Moved: b

[chrism@oops meld3]$



MELD3 AND ZOPE

 The “meld3” package isn’t tied to Zope in
any way. It is Python and C without any
dependencies on Zope.

® Thereis a “z3meld” bindings package for
Zope3/Five that makes meld3 easy to use
in Zope.

* “z3meld” provides ZPT-macro-like
functionality and easy view integration.



Z3MELD SCREENCAST

As if the other ones weren't, this slide is pointless.



WHERE DOM TRAVERSAL
SUCKS

e For lots of tasks, traversing the DOM and
mutating nodes just plain sucks.

* meld3 has a helper for the task of filling in
HTML form values, which is one place
where using the DOM really, really sucks.

o fillmeldhtmlform accepts a dictionary and
mutates meld nodes which purport to be
form values in useful ways.



FILLMELDHTMLFORM
SCREENCAST

I'll just show it.



NEED FOR SPEED

1.26ms/rendering
(meld3 CVS, simple test
script)

2.48ms/rendering
(ZPT from Zope 3.1.0,
simple test script)

See htt;

0: / / www.plope.com /Members/ chrism /

meld3 zpt profiling madness




BUT ALL ISN’T ROSY

9.5 ms/request
(z3meld CVS view, Zope
3.1.0 benchmarked via
‘ab’)

9.5 ms/request
(ZPT view from Zope
3.140)

Something is slowing the meld bindings down. See
plope.com (same URL as last slide) for details.



LESSONS LEARNED

The Zope3 view composition machinery is
fairly magical.

But it’s still fairly easy to integrate new
templating systems into Zope 3 and Five
via the component architecture.

ZPT is very fast for being written entirely in
Python.

Benchmarking is hard but useful.



WHERE TO GET IT

http:/ /www.plope.com /software / meld3




THINGS I’D LIKE TO SEE

meld3 integration with other Python
frameworks.

meld3 implementations in other languages.

Configurable meld identifier (e.g. “id”
instead of “meld:id”).

Fix speed of bindings under Zope 3 / Five.



THE END



