

Web Services with Zope and
Plone

PART 1 -- Overview

What are Web Services?
• XML technology
• SOAP
• WSDL
• XML Schema
• UDDI

What is SOA?
• Service Oriented Architecture

• Save vision as CORBA and DCOM implemented
atop Web Services

• Service Peer Model where applications are
composed of loosely coupled, highly cohesive
services based around interface rather than
implementation.

How is this different from XML-
RPC?

• Self describing*
• Deals well with complex data
• Extensible messaging protocol

• via Headers and Actors
• Web Services and SOA

* XSD is complex, using only a subset of it helps
 create interoperable data.

What are Web Services and SOA?
• Service Oriented Architecture
• Self Contained
• Self Describing
• Decoupled Services
• Location Independent

XML Technology
• XPath
• XML Schema Definitions (XSD)
• XSLT
• XQuery

Web Services Standards
 (Generation 1)

• UDDI
• SOAP
• WSDL

Web Service Standards
(Generation 2)

• Messaging Specifications
• SOAP
• SOAP + Attachments
• WS-Addressing
• WS-Transfer

• Description/Discovery
• WSDL
• WS-Policy
• UDDI
• WS-ResourceProperties

• QoS
• WS-ReliableMessaging
• Ws-ResourceLifetime
• Transactions

• WS-AtomicTransactions
• WS-BusinessActivity
• WS-Coordination

• Security
• WS-Security
• WS-Federation
• WS-Trust
• SAML
• ...

Web Service Standards
(Generation 2 -- continued)

• Composition
• BPEL4WS
• WS-Notification
• WS-Manageability
• WS-DistributedManagement

Web Service Standards
(Generation 2 -- continued)

And a few others. There are competing standards
in many of these slots as well.

Making Sense of it all
• WS-I Basic Profile

• Defines a subset of these standards that should be
interoperable

• Clarifies ambiguity in specifications
• Limits some of the flexibility of these many

specifications to form a core offering that can be
reasonably implemented on different platforms.

• Its really the best we can hope to do right now.

PART 2 – Technology

Messaging Styles
• RPC (SOAP encoding)

• "Improved XML-RPC mode"
• Encode Arguments/Response

• Document (document/literal)
• "When you already have XML or don't have

anything"
• Send Document
• Part of WS-I Basic Profile

Publishing Models
• Service Publishing
• Object Oriented

Two slightly different ideas about Web Services.
The model choice here has real implications in the
flexibility and options you have moving forward.

Service Oriented Publishing
• A service that deals through qualification

with many different objects on their behalf.
This model is quite common.

• The service exports the interface

application/serviceA.invoke(id="/site/objects/a")

Object Oriented Publishing
• Each system object is exposed with its own

services and interfaces exposed on it. This is
Zope's common model for publishing.

• The object exposes its interface

application/documentA/Get()

Implications
• Discoverablity
• Instance level uniqueness

In reality you need a bit of both and you need query
services with WS-Addressing End Point References

WS-Addressing and EPR
• Basis of most modern WS Standards
• WS-A defines how to target and deliver

messages between services
• Implies a basic resource model and lifecycle
• Defines End Point References (EPR)

• pointers back to other objects with enough
embedded information that they should be
invokable

• Middleware can convert an EPR into a full object
proxy

PART 3 Mechanics

@WSDL

@wsdl(expects, returns)

Python2.4 decorator (callable in Python2.3 directly)

Annotates the method with typecode* information used
in type marshaling and SOAP publishing

Archetypes objects can automatically provide their
own typecodes.

@wsdl(None, typecode)
 def Get(self):

“Publish 'self' to SOAP”
return self

* see ZSI.TC.* for more information on typecodes

auto_wsdl
auto_wsdl(method, expects, returns, **kwargs)

Not a descriptor.

Publish a method into the WSDL with less domain knowledge
about typecodes.

Convenient access to schema fields using just their id.

auto_wsdl(MyAT.getTitleAndID,
 expects=None,
 returns=('title', 'id'))

Client Examples

$ wget http://server/plone/document/WSDL
$ wsdl2py -f WSDL

from ZSI import *
from ATDocument_services import *
import sys
from config import USER, PASS

loc = ATDocumentServiceLocator()
port = loc.getATDocumentPortType(**kwargs)

doc = port.Get(Empty())
print "Got", doc._title, "from",
 doc._url, "using ZSI."

from SOAPpy import *

url = "http://localhost:8080/test/atd/WSDL"
proxy = WSDL.Proxy(url)
doc = proxy.Get()
print doc['title'], “from SOAPpy”

SOAPpy

ZSI

Client Examples (continued)
$ wsdl http://server/test/doc/WSDL

using System;

class ATDocumentClient {

 public static void Main(String [] args) {

 ATDocumentService s = new ATDocumentService();
 s.Credentials = new System.Net.NetworkCredential(
 "username", "password");

 // Get its state
 ATDocument doc = s.Get();

 Console.WriteLine("Got " + doc.title + " from "
 + doc.url + " using Mono.");

 doc.title = doc.title + " updated";
 s.Put(doc);
 }
}

MONO/.NET

Client Examples (continued)
Plone

What Makes a good WS?
● Expose and manipulate Domain Objects

along transactional boundries

– Domain level scoping

– Transactional semantics that maintain
Domain integrity

● Idempotent methods and tools (utilities)

Part 4 Limitations and Options
• Currently limited by the availablity of Python

SOAP tools.
• No proper request/response cycle
• Inablity to layer messaging standards around

current impls.
• Limited support in Archetypes

• Schemata should map to XML namespaces
• Requires Horizontal domain knowledge to

use.
• have to understand

• ZSI (Typecodes)
• A bit of SOAP

Future
• A new SOAP library.

• Useful in Python, Zope2/3 and Plone
• Usable request/response cycle
• DOM based for specification layering

• Schemata should specify namespace
• Reduce domain knowledge needed to

produce and consume these services

