
Illustration Types in PloneIllustration Types in Plone

2005 North American Plone Symposium
New Orleans, LA, July 22, 2005

Jeff Pittman
Dept. of Earth and Space Sciences,

Lamar University
Beaumont, Texas

ess.lamar.edu

geojeff.org for software releases

Illustration Types in Plone

● There is a common need for custom
types for generation of images and
SVG and PDF documents. Aren't you a
visual learner or thinker? Say yes!

● This effort provides a “dev pack” of
example types to use as go-bys.

● Examples include SmileyFace,
TeachingSchedule, EarthMoonSun,
GeologicalTimeScale...

My Life as an Illustrator
“No Pain, No Gain”

In the Steady March of ... Progress

Rapidograph

Zipatone,
Transfer Lettering

Dot Matrix and,
FancyFontTM,

Pixels

CorelDrawTM

IllustratorTM

CanvasTM, etc.
for

Vector Graphics

Specialized Software
for custom generation

of ready-made graphics.

First with Java and the JAI,
Now Python, SVG, PIL, ReportLab

 Programmable Graphics
(late 1970s-1980s)

(early 1980s)
(mid to late 1980s)

(late 1980s to Now)

(mid 1990s to Now)

It is easy to forget the power we have now
to do things that were previously not feasible.

SVG (Scalable Vector Graphics)

● 2D Vector, Raster
Graphics, Text

● W3C Standards
● XML-based
● Interactivity,

scripting
● Better browser

support coming

● Xml Binding Language

● Text Wrapping

● Editable Text

● Audio/Video

● Transitions

● Multipage Support

● Streaming, Timing,
Vector Effects, Better
Scripting

For SVG 1.2:

See report by Andreas Neumann, carto.net

0,0

0,0

yUp()

ReportLab

SVG

Flip Me!

No, Flip Me!

SVG and ReportLab
have different Y-Axis Origins.

Hey, Variety is the Spice of Life.

Use a simple method to flip y-values,
which returns (height - y-value).

ReportLab generation
 drawing.add(Circle(self.x_offset+(s/2), self.y_offset+(s/2), s/2,
 fillColor=self.fillColor, strokeColor=self.strokeColor,
 strokeWidth=max(s/38.,2.)))

 for i in (1,2):
 drawing.add(Ellipse(self.x_offset+(s/3)*i,self.y_offset+(s/3)*2, s/30, s/10,
 fillColor=self.fillColor, strokeColor = self.strokeColor,
 strokeWidth=max(s/38.,2.)))
 # ...
 # some math to get the x,y points for the curve of the smile
 # ...

 smile = PolyLine(pointslist,
 fillColor = self.strokeColor,
 strokeColor = self.strokeColor,
 strokeWidth = max(s/38.,2.))

 drawing.add(smile)

For ReportLab, you use
Python calls to add drawing
primitives to a ReportLab
Drawing instance, and it is a
simple matter of effectively
using the well-documented
API to make your custom
drawings.

SVG generation

 smiley_svg = \
 [" <circle cx=\"%d\" cy=\"%d\" r=\"%d\" " %\
 (self.x_offset+(s/2),yUp(self.y_offset+(s/2)), s/2),
 "style=\"fill:%s;stroke:%s;stroke-width:%d\" />\n" %\
 (colorstr(self.fillColor),colorstr(self.strokeColor),self.strokeWidth)]

 for i in (1,2):
 smiley_svg += [" <ellipse cx=\"%d\" cy=\"%d\" rx=\"%d\" ry=\"%d\" " %\
 (self.x_offset+(s/3)*i,yUp(self.y_offset+(s/3)*2), s/30, s/10),
 "style=\"stroke:%s; stroke-width:20\" />\n" %\
 colorstr(self.strokeColor)]
 # ...
 # some math to get the x,y points for the curve of the smile (calls yUp())
 # ...

 smiley_svg += ["<polyline points=\"%s\" fill=\"none\"
 style=\"stroke:%s;stroke-width:%d\"/>\n" %\
 (self.getPointsListString(pointslist),
 colorstr(self.strokeColor),max(s/38.,self.strokeWidth))]

 return smiley_svg

For SVG generation, a list of
strings is made. It is a bit
persnickety, as you need to
escape quotes, do 'printf'
type parameter substitution.

Extensions
 Install.py
CHANGELOG.txt
README.txt
version.txt
__init__.py
config.py
SmileyFace.py
FrecklesValidator.py
drawing.py
utils.py
sample_data.py
skins
 SmileyFace
 SmileyFace_view.pt
 SmileyFace.css.dtml
 smileyfaceicon.gif

SmileyFace Code

Main Archetypes code
for creating folder, data
input widgets, and the
main controlling class.

This contains the actual
drawing code for direct
SVG and for creating a
ReportLab drawing.

This page template has code for
showing a list of generated items.

(in Zope Products directory)

Design and Description

● Archetypes-based – uses standard
widgets with customization for input
validation of CSV data.

● Folderish – goal is generation of one or
more targets (images, PDF document,
or SVG document), which will be held
in a folder. The view shows a list of
generated items, to be clicked for
viewing. A custom view is also easy.

Design and Description, cont.
● Generation – for SVG, examples are

shown for emitting directly; all other
targets are generated with ReportLab
(jpg, png, PDF, etc.). ReportLab can
also be used to generate SVG.

● Custom SVG – offers functionality for
interactivity using Ecmascript.
Examples are given for Y-axis flipping
and basic graphics generation.

● Colors – Nice (time scale uses colors from usgs.gov).

Design and Description, cont.
● Editing – graphics targets are

regenerated after data are modified;
old versions are simply replaced; if
versioning needed, copy.

● Scope, scale – there will be only one,
or perhaps as many as 15 or 20
instances – so, robustness is assumed
(SVG is compact, if size is a concern).

● Charts – other products handle charts,
but this system could be useful.

Design Questions

● When to use CSS and when to “draw”?
● CSV data input – pragmatic? efficient?

Popular with users?
● DevPack or Individual “Products”?

- On plone.org, which is better?
● Best practices? -- Discovery of the

obvious? Violation of the obvious?
● Tricks? – e.g., CSS overflow:scroll?

GeologicTimeScale (The Inspiration)

● Data from stratigraphy.org

● Standard colors from
usgs.gov

● Simplified and Complete
Versions

● point-in-time events and
range events (the bars)

● Examples: Cretaceous birds,
Eocene Mammals of
Wyoming, Cephalopoda...

● Rollover text effects in SVG

This is a screen capture
from a Windows PC
running Internet Explorer.
The small box showing
Jurassic System (199.6 ...)
is a popup tooltip that
appears when the mouse
cursor passes over an item.
Such effects in SVG add
important interactivity and
enhancement to content.
ECMAscript helper routines
do this tooltip effect.

EarthMoonSun (A “Solar” Calendar)

● Phases of the moon
are the focus; shows
current day or month

TeachingSchedule
● Data is for recurring events
(college classes) for each
teacher.

● The plot produced is very
wide, if run for a whole
semester.

● A column for each day shows
classes, identified by time and
teacher.

● This is just a snippet from a
very wide drawing.

6 AM

12

5 PM

More Illustration Types

VacationPlanner
● design can closely follow TeachingSchedule, with CVS
data for vacations to include person info, start day,
day_portion (all, morning, afternoon), duration, etc.

● This might be a case where use of a custom type for
Vacation would allow users to add their own Vacation
instances to the folder. The calendar plot-generating
code would read the data from these, instead of CSV
data entered in a Lines field. Or users add their own
Vacation instances to their home folders, etc.

● There are “horizontal” and “vertical” versions of the
calendar plot.

VacationPlanner
}

● Vertical layout is
“geological” and, in
this case, seems to be
appropriate (most
recent is on top).

● Vacation days are
specified as CSV
lines with data for
person, start day,
duration, ½ day, full
day, etc.

● I don't get vacations,
so why do I care? :)

More Illustration Types
● Evolutionary Trees (would use

drawtree.py by Rick Ree)
– Data: nested groups for drawing

branching “tree” diagrams to show
evolutionary relationships.

● BookAnnotation (needs programming)
– Data: page and line number for words and

topics needing description.
– Small format pages for printing.
– Displays for interactive sequential

scrolling and searching for specific pages.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

242 243 244 246

247 248 249 250

Cordillera

Mr. Low

Gregory Bay

Sarmiento

Port Famine

true creeper
(Certhia familiaris)

Harpalidae

Heteromidiae

Succinia

Pyrifera

Kerguelen Land

their tattered clothes
had been burnt by
sleeping so near their
fires.

Mount Tarn

death-like scene
of desolation

Winter's Bark

Dr. Hooker

cryptogamic

hydra-like polypi

Holothuriae

Flustacea

the miserable lord of
this miserable land

Magdalen Channel

The inanimate works
of nature – rock, ice,
snow, wind, and
water – all warring
with each other, yet
combined against
man – here reined in
absolute sovereignity.

relief

BookAnnotation
● mock-up of multipage panel
for Charles Darwin's 'Voyage
of the Beagle'
● shows 8 pages (as example)
● would have popup mouseover
 tooltips for terms and topics
● A three-wide, nine-deep
portrait style layout would
work better for online viewing
on a Plone page

More Illustration Types
● Custom Maps (See carto.net for SVG)

– Using PIL and SVG, aerial photos and
infrared images are cropped and chopped
for generation of SVG-based maps for
scientific surveys.

– Regular scientific surveys often need
maps for showing a random data
collection scheme generated by software.

– Generation/storage in Plone would offer:
● Archiving, Organization, Centralization
● Monitoring by collaborators/mentors
● Incorporation of Results for Presentation

My Ecology Research Project – SVG, PIL
Plone as Repository, as Hub for Collaboration

This is a portion of a map showing an infrared image of an East
Texas forest area, where an ecological study is being done. Using
Python, PIL, and SVG, maps are produced for each field session, for
showing locations of randomly selected data collection sites.
Instances of this map would be created several times each month,
for each field excursion, and would be saved in an archive folder for
scientific data validation purposes, and for providing a means for
real-time monitoring of the project by collaborators and managers.
There would, of course, be many other benefits and uses in Plone.

Conclusions
● Archetypes-based illustration content types

offer a useful means of taking user input and
creating graphical plots and drawings. Basic
drawing “harness” is complete -- now for:

– evenness of browser support
– effective cross-platform (browser) design
– exploring enhanced user interactivity via

SVG, CSS.
● Thanks to Plone Community

● Thanks to creators of SVG, PIL, ReportLab,
Python, etc. tutorials and code

Follow-Up Questions/Answers
● Availability: Check geojeff.org which will

always have an up-to-date listing and status
of projects. Individual products will be
added to products area of plone.org as they
are approved and published.

● Could this system be used for very large
diagrams with many parts? Yes, in fact, in
considering the SVG-based interactive
mapping applications in carto.net examples,
use of this system seems appropriate. Small
images that are part of the UI, multiple SVG
files, and multiple ECMAscript files could be
maintained by such a folderish AT-based
Mapping controller application.

Follow-Up Q/A, continued
● CSV input: A participant commented that

use of ExternalEditor could work well, and
also that use of a spreadsheet by “normal”
users, along with exporting to CSV and then
pasting into the Archetypes lines field
widget, would help make CSV input viable.

● Could TeachingSchedule or VacationPlanner
be tied to events? (a question asked in the
elevator after the talk) Yes, in the main
product class holding the AT schema and
code, an events folder could be read to
rebuild graphical representations of the
events, showing time conflicts, firing conflict
reports, finding open slots for an event, etc.

Follow-Up Q/A, continued
● SmileyFace, boosted?: A symposium

attendee asked if I had seen the use of a
smiley face as a display to show the state of
10 variables. I found the following page --
http://members.aol.com/DBBoles/bc36b.html
-- which describes reseach on the topic, and
has links to articles. I am not sure if this is
the project the attendee was recalling, but
suspect that it is, because he mentioned 10
variables. Perhaps SmileyFace could be
modified to present a dynamically changing
SVG smiley face, controlled by ECMAscript
helper routines – maybe this would get some
really smart people to use Plone Zone :)

