
Multilingual content-
management with 

LinguaPlone



Plone Solutions

Helge Tesdal
Geir Bækholt



Our apologies to those 
expecting a lot of 
code-examples

LinguaPlone actually ended up making 
things so simple you won’t need it



Always prepared !
An early start on the interactive tutorial

http://plonesolutions.com/lp

A download for those who want to follow along.



LinguaPlone ?

• A new product for Plone

• For handling multilingual content

• For handling translations

• 3rd Gen.

http://plonesolutions.com/lp



Plone User Interface

• Handled by PlacelessTranslationService

• Separate from content

• Many translation teams making Plone-
translations and keeping them up-to-date

• 35 languages!

• You can help

http://plonesolutions.com/lp



Why LinguaPlone

• There have been several attempts before, 
with different approaches

• Localizer (1st. Gen.)

• I18NLayer, I18NFolder, I18NArchetypes 
(2nd. Gen.)

http://plonesolutions.com/lp



The 2nd Gen. solutions

• These products have helped a lot of people

• They have helped us explore the problem 
domain

• Some limitations, some different 
approaches

http://plonesolutions.com/lp



I18NArchetypes

• One object represents all translations

• Translations are stored inside complex 
attributes

• Asking for an attribute returns it in the 
correct language

• Enables per-field-fallback

http://plonesolutions.com/lp



I18NArchetypes 
disadvantages

• FTP / WebDAV / import / export will need 
special translation-aware marshallers

• Workflowing translations is challenging for 
the same reason, as the translations are all 
the same object

• Special catalog requirements



I18NLayer

• Containing wrapper-object that keeps 
translations inside

• Can keep some data in the layer, like 
metadata

• Enables translations of all types, not only 
Archetypes

http://plonesolutions.com/lp



I18NLayer 
disadvantages

• Limited support for folderish content

• Changes acquisition-path

• Possible reference inconsistencies – are 
references to point to the layer or the 
contained object?



I18NLayer 
+ I18NFolder

• A folder-like object on the I18NAT- 
principle for folders, I18NLayers for 
content

• No solution for general folderish content

• Catalog problems for folders



Enter LinguaPlone



LinguaPlone features

• As transparent as possible, for site-editors 
as well as for users.

• Less workarounds

• Everything else works as usual

• Works with your archetypes content-types



• Almost no special skin overrides

• Translations are separate objects

• Can be workflowed separately

• Language-independent fields

• Has a notion of canonical content

• Works with WebDAV and FTP

• Multilingual URLs



• Translate content automatically

• Handle import/export from external tools

• Handle non-Archetypes content

What does it not do?



Simplicity

• We built LinguaPlone to be simple and easy 
to extend

• Developers can build features on top of 
LinguaPlone



• Multilingual-ize your types without affecting 
the way they work without LinguaPlone 
installed

• Supporting LinguaPlone is a 4 line-addition 
to your Archetypes class-definition



How does it work ?



Archetypes ClassGen

• Overrides registerType and process_types 
from Archetypes

• Builds special mutators and accessors for 
fields marked as languageIndependent

• Creates a slightly customized constructor 
for multilingual content



Archetypes references

• Reference: pointer between objects, 
independent of location

• LinguaPlone keeps track of translations 
with Archetypes references.

• “translationOf”-relation



Multilingual types

• Inherit a special set of Base-classes

• Same as your regular Archetypes base-
classes, but also inheriting I18NBaseObject.

• Implements ITranslatable interface



Building a multilingual 
website



Rules:

• Don’t mix languages !

• Flags do work for selecting languages

• You still don’t have to use flags



Assumptions

• We will be building a completely multilingual 
website

• We will be using only Archetypes content

• All folder-ish content (Folders) with 
translated sub-content must be translated



Let´s set it up first

• Configure and use LinguaPlone

• Add multilingual-support to custom types



Making it simple !
The package revisited

http://plonesolutions.com/lp



Install-and-go

• Drop the package contents in your 
products directory

• Restart Zope

• Add a new Plone site, choose Multilingual 
Site from the drop-down

• The customisation-policy should just do all 
the product installs, no magic. 



What’s in the package?
• Archetypes 1.3 RC2

• ATContentTypes

• LinguaPlone

• PTS + PloneTranslations + LanguageTool

• PlonePortlets w/the new navtreeportlet

• Multilingual Customization Policy + 
workflow



• Replacement content-types for Plone

• Scheduled for Plone 2.1

• Will make many peoples lives easier

• Already have support for LinguaPlone

• All your default content can be multilingual 
out of the box

AT Content Types !



PlonePortlets

• Makes portlets into intelligent objects

• Makes portlets archetypes classes

• Enables portlets-per-user and portlets-per-
group

• Enables site-editors to add new portlets 
from a common base

• Not 100% done yet

Shameless marketing break



For multilingual UI

• PlacelessTranslationService

• PloneTranslations (the .po-files)

• PloneLanguageTool negotiator will keep UI 
and content language in sync !





Multilingual Site Policy
• Adds a new Plone site with some additions

• ATContentTypes install and migration

• PloneLanguageTool

• LinguaPlone with demotypes

• Sets up a few default languages



Language preferences
• Plone setup > Language Settings

• Choose the languages your site will be 
available in

• Pick at least two







Multilingual content



LinguaFolder & 
LinguaItem

• Not special

• Simple example types for testing



screenshot add linguaitem

Add a Lingua-Item



LinguaPlone Test Item

info@plonesolutions.com

LinguaPlone is a very useful tool for 
managing translations and the relations
between them in Plone. It is really 
simple to use.

Language-independent



Language-independent 
• Attributes that do not change between 

translations

• Useful for attributes like names, addresses, 
dates and files

• Stored on each translation

• Changing one updates all translations

• Accessor method actually looks up the 
value in the canonical object



Canonical

• The original content

• All translations point to the canonical 
content as their source

• Useful in business-rules and workflow logic







Separate objects
• Each translation is a separate object

• When translating folders you get a 
“subtree” for each language

• Clicking a flag switches you to the desired 
location



Translate

Translate

Translate



Search

• We patched the Catalog Tool

• Searches always return results in the 
current language

• Makes everything that is based on Catalog 
queries (like portlets) work without further 
modification



Overriding search

• Sometimes, we do not want searches to be 
language aware

• Pass Language=”all” to get results in all 
languages

• Pass Language=[’en’,’de’]



Special indexes

• Language

• UID

• id

• getId

When searching on the following indexes, all 
results are returned, regardless of language



Making your own type 
multilingual

The code example..



Before:

Now:



Translation Workflow

• An example workflow

• Gives you a worklist of objects that are not 
translated

• Does not enforce translation



• When you create a new translation, it is in 
the “translating” state

• The canonical object gets a variable set that 
it is not fully translated yet

• Every time a translation is transitioned 
from “translated” to “published”, the 
canonical gets checked whether it is fully 
translated or not







Future directions

• Fallback handling

• Reference handling

• Grey out flags where no translations exist



Questions ? 

info@plonesolutions.com


