
www.plonesolutions.com

Top 20 Plone Pitfalls
And Then Some

Stefan H. Holek
stefan@plonesolutions.com

All disclaimers apply.
I am not going to argue over any of these, don’t try.

1• Do not put off learning Python until [insert
favorite excuse here].

Pick up a book RIGHT NOW.

• Python is the scripting language.

• Zope and Plone are written in Python.

• You can learn Python in a week.

• http://diveintopython.org

2 days if you already know how to program.
I am not talking about metaclasses, decorators, or other
advanced concepts.

2• Do not attempt to outsmart Zope and
Plone; you will fail.

• Do stuff The Plone Way™.

• If you feel what you are doing smells, stop
right there.

• There is an elegant solution for everything.

3• Do not guess.

• plone.org/documentation, zopewiki.org,
zopelabs.com, www.neuroinf.de/LabTools, ...

• google.com

• plone-users, plone-setup, ... (gmane)

• #plone

• DocFinderTab, grep, find

There are books even!

4• Do not think in terms of URLs.

• Corollary: Do not think in terms of
websites, even.

• With “traditional” web-frameworks URLs is
all you have.

• With Zope, you are building an object
system, and the relation of your objects is
what counts.

• A URL is just one of the many attributes an
object has.

• The fact that your objects publish nicely to
the web is simply a side-effect of using Zope.

5• Do not build URLs by hand.

• Corollary: Do not assume URLs have any
relation whatsoever to the physical path.

Constructing URLs by string concatenation or from the physical
path is an e!ective way to break virtual hosting.

• The path of an object is a function of the
ZODB layout, the URL is a function of the
current REQUEST.

• An object can have more than one URL at
any time.

• The only way to convert back and forth are
the REQUEST.physicalPathToURL and
REQUEST.physicalPathFromURL APIs.

• brain.getURL already does the right thing.

6• Do not develop in release mode.

• Corollary: Do not run a production system
in debug mode.

• Debug mode is slower, but automatically
refreshes skins, External Methods, e.a.

• You also get better logging.

• Release mode is faster, but you have to
restart Zope for changes to take effect.

Zope 2.7 and 2.8 used debug mode by default.

7• Do not expose ZServer to the Internets.

• Apache

• lighttp

• IIS

• Squid

• Varnish

8• Do not develop your application in TALES.

Templates section starts here.

• Templates are for presentation, and for
presentation only.

• Logic goes into Python code (scripts, tools).

• Pay 5 ! (or $) into the kitty for every use of
“python:”

9• Do not change strings in templates to
rename things.

• Plone has very sophisticated translation
facilities.

• Use the .po files, Luke.

plone-en.po

10• Do not change settings of filesystem
templates (skins) in the ZMI.

The fact that this works at all is probably a design error, even.

• Skins are not persistent, so these settings
won’t stick.

• Use the .metadata files to make settings.

11• Do not impose a relational data model on
an object database.

ZODB section starts here.

• Do not expect the ZODB to work like
MySQL, it won’t.

• There is nothing wrong with using an
RDBMS with Plone, if your data calls for it.

12• Do not suppress ConflictErrors; avoid bare
except: and don’t use hasattr (!).

• hasattr swallows all exceptions.

• getattr(ob, ‘name’, marker) is not marker

• CMFPlone.utils.safe_hasattr

13• Do not change security settings in the ZMI.

Security section starts here.

• Security is controlled by workflow, and by
workflow only.

• One exception: the portal object itself.

The Security tab is o!-limits! Don’t go there, you’ll regret it.

14• Do not check for roles, only check for
permissions.

• That’s because objects and methods are
protected by permissions, not roles.

• portal_membership.checkPermission.

You need permission to do something.
Roles are responsibilities.

15• Do not use
REQUEST.AUTHENTICATED_USER.

• AUTHENTICATED_USER is unsafe and has
been deprecated many winters ago.

• portal_membership.getAuthenticatedUser

16• Do not use the Authenticated role to model
your site’s security.

• Authenticated is a system-owned role.

• Add your own custom role(s).

17• Do not assign users or groups the Owner
role globally, ever. • Owner is only useful as a local role.

18• Do not use proxy roles.

• Proxy roles are similar to SUID scripts in
*nix.

• You are poking holes into your site’s
security; be very careful about what your
proxied scripts do.

Ask your sysadmin what he thinks about gratuitous use of SUID
scripts.

19• Do not delete user accounts that may own
objects in your site.

• Every object has an “owner”, typically the
user who created it.

• Not the same as the Owner local role!

• Zope security intersects the owner’s
permissions with the authenticated user’s
permissions.

• When the owner goes away you are in
trouble.

“Executable ownership” introduced to avoid trojan horse attacks.
Take ownership of orphaned objects.

20• Do not forget to add security declarations
to your methods, the default is public (!).

• That’s because Item, which is the base class
for most Zope2 objects, allows access to
unprotected attributes.

• Be extra careful with tools. Methods may
need to be public and perform their own
security checks.

We had troubles in Plone recently because of this. See Hotfixes.

21• Do not call getObject on catalog results.

Performance section starts here.

• getObject uses restrictedTraverse internally.

• Add everything you need as catalog
metadata.

The catalog only stores the physical path.

22• Do not use contentValues nor objectValues.
• contentValues/objectValues “wake up” sub-

objects, i.e. load them from disk into
memory.

objectIds is OK, incidentally, not however contentIds.

23• Do not take the truth value of objects, ever.

• “if foo:” is absolutely evil, unless foo is of a
simple type.

• <tal:condition=”foo”> is even worse, unless
foo is of a simple type.

You never know what is happening behind the scenes.
Python tries __nonzero__ then __len__.
condition=”foo” may well do things like render templates.

24• Do not return objects from scripts, return
(lists of) dictionaries.

• Objects cannot be RAM-cached.

• Objects will be security checked.

Python scripts are prime targets for RAM-caching.

25• Do not compute values at display time. • Compute values at edit time and store
them.

26• Do not “touch” objects at display time.

• Viewing an object must not cause a database
write.

• Easy to accidentally cause a modification;
watch the Undo tab.

27• Do not optimize code without a profiler.
• Guessing does not work with optimization.

• CallProfiler, PTProfiler, and ZopeProfiler.

28• Do not run production sites without a cache
in front.

• “Plone should be faster”.

• Plone is fastest when not hit at all.

• mod_cache, Squid, Varnish, ...

Thanks!

