
Jim Roepcke
Tyrell Software Corporation

Introduction to Python for
Plone developers

Plone Conference, October 15, 2003

• Python language basics

• Where you can use Python in Plone

• Examples of using Python in Plone

• Python Resources

What we will learn

• Python is a “strongly but dynamically typed”
object-oriented programming language

• Automatic garbage collection

• Everything is an object

• No semi-colons or braces unlike C/C++/Java

• Blocks are indented

• comments begin with #

What is Python?

• A simple Python program, as it would appear if
run in a command-line python interpreter:

>>> words = ('Hello', 'World')
>>> sep = ', '
>>> print '%s!' % sep.join(words)
Hello, World!

• This program joins two words with a comma
and a space, which are printed with an
exclamation point following them

Demonstration

• Do not have to be declared or typed

• Must be assigned to before being used

• Follow standard identifier naming rules
eg: foo3 is valid, 3foo is not, _3foo is valid

• Refer to objects, do not “contain” them

• Objects have a type, variables do not

• None is the null object, is false in truth tests

Variables

• Assignment copies the reference, not the value

• Let x refer to an object, the number 3
x = 3

• Let x and y refer to what z refers to
x = y = z

• Let x and y refer to what i and j refer to
x, y = i, j

Assignment

>>> x = [5, 10, 15]
>>> y = x
>>> print y
[5, 10, 15]
>>> del x[1]
>>> print y
[5, 15]

• Remember, assignment only copies the
reference to the object, not the object itself!

Variables refer to objects

• Python source code is organized into modules

• Modules contain statements, functions, and
classes

• Modules have a .py file extension

• Modules are compiled at runtime into .pyc files

• Modules can be organized into packages

• Packages can contain packages

Organizing source code

Importing modules

• the import statement imports a module or
attribute from a module so that you can use it
in your program

• Importing a module and using it:

import rfc822
from = 'Joe <joe@doe.com>'
name, addr = \
 rfc822.parseaddr(from)

• If you want, you can import particular
attributes from a module

from math import sqrt, pi, sin
rootOfX = sqrt(4)

Importing attributes from
modules

• Integer: 0 -1 4

• Long Integer: 0L 4L -3L

• Floating point: 2.5 5.
1.0e100

• Complex: 2.5j 5j 1e10j

Numbers and Math

Addition +

Subtraction -

Multiplication *

Power **

Division /

Floor Division //

Modulo %

from math import sqrt
x, y = 9, 16
xs, ys = (x, sqrt(x)), (y, sqrt(y))
template = 'The sqrt of %d is %d.'
print template % xs
print template % ys

Math Example

The sqrt of 9 is 3.
The sqrt of 16 is 4.

Math Example: output

• String can be single quoted or double quoted
>>> str = 'this' + " and " + 'that'

• Get a single character by indexing:
>>> str[0]
't'

• Get a substring by slicing
>>> str[1:4]
'his'

Strings are Sequences

http://www.python.org/doc/current/lib/string-methods.html

capitalize, center, count, encode,
endswith, expandtabs, find, index,
isalnum, isalpha, isdigit, islower,
istitle, isupper, join, ljust,
lower, lstrip, replace, rfind,
rindex, rjust, rstrip, split,
splitlines, startswith, strip,
swapcase, title, translate, upper

String methods

• Empty tuple: ()

• One item tuple: (6,)

• Multiple items: ('a', 'b', 3, (9, ''))

• Use indexing and slicing to access contents

• Tuples cannot be modified

• Use + to concatenate tuples

Tuples are Sequences

• Empty List: []

• One item List: [6]

• Multiple item List: [1, 3, [4, 6], '10']

• Use indexing and slicing to access contents

• append() to add item, del to remove item

• Use + to concatenate lists

Lists are Sequences

• Dictionaries hold key/value pairs

• emptyDict = {}
oneKey = {'id':'document_view'}
car = {'make':'Saab', 'year':1999}

• Accessing a key: car['year']

• Assigning a key: car['color'] = 'red'

• Removing a key: del car['make']

Dictionaries are Mappings

• You can get lists of keys and values from
dictionaries using the keys() and values()
methods

• You can get a list of tuples containing the keys
and values from a dictionary using the
items() method

Getting keys and values out

• To get the number of items in a sequence or
mapping such as a string, tuple, list, or
dictionary, use the built-in len() function

>>> print len('abc')
3
>>> print len(['foo', 'bar'])
2
>>> print len ({})
0

len is short for length

Flow Control
if expression is true:
 ...
elif expression2 is true:
 ...
else:
 ...

while expression is true:
 ...
else:
 ...

for item in sequence:
 ...
else:
 ...

x = 1
y = 2

if (x == y):
 print 'x equals y'
elif (x > y):
 print 'x is greater than y'
else:
 print "D'oh! I give up!"

Branching example

D'oh! I give up!

Branching example: output

numberOfLoops = 3
ct = 0

while (ct < numberOfLoops):
 ct = ct + 1
 print 'Loop # %d' % ct
else:
 print 'Finished!'

Looping example

Loop # 1
Loop # 2
Loop # 3
Finished!

Looping example: output

words = ['green','eggs','and','ham']
sentence = words[0].capitalize()
remainingWords = words[1:]

for word in remainingWords:
 sentence += ' ' + word
else:
 print '%s.' % sentence

Sequence iteration example

Green eggs and ham.

Sequence iteration example:
output

car = {'make':'Ford'}
car['model'] = 'Focus'
car['year'] = '2002'

print '--- one way ---'
for key, value in car.items():
 print '%s: %s' % (key, value)

print '--- same thing ---'
for item in car.items():
 print '%s: %s' % item

Another example

--- one way ---
make: Ford
model: Focus
year: 2002
--- same thing ---
make: Ford
model: Focus
year: 2002

Another example: output

Truth Tests

• False: 0 None (len(x) == 0)

• True: non-zero Numbers, (len(x) != 0)

• Comparison: == != < <= >= >

• Identity: is is not

• Membership: in not in

• and or not

• Return one of the operands rather than a true
or false value

• The net effect is the same, however

• Can be used to simulate a ternary operator

• Java: answer = x ? y : z;

• Python: answer = (x and y) or z

Boolean operators

Boolean operator behavior

x or y if x is false then y, else x

x and y if x is false then x, else y

not x if x is false, then 1, else 0

Truth test examples

>>> 's' and 3
3
>>> '' and (1,2,3)
''
>>> 's' and {}
{}
>>> not [] and 's'
's'
>>> not ([] and 's')
1

• the def statement creates a function

def sum(a1, a2):
 if type(a1) == type(a2):
 return a1 + a2
 return None # not very smart

• arguments can take default values

def concat(s1, s2, s3 = '', s4 = ''):
 return s1 + s2 + s3 + s4

• concat('a', 'b') returns 'ab'

Functions

• Script (Python) objects in Zope

• Zope Page Templates

• CMF Actions

• Expressions in DCWorkflow transitions,
variables and worklists

• External Methods

• Custom products

Where you can use Python
in Plone, with examples

• Create a “Script (Python)” object in the
Plone/portal_skins/custom folder using the ZMI

• The script is a method callable on an object
through Python, or through the web

• someObject.someScript(foo='bar')

• http://site/someObject/someScript?foo=bar

• In the script, context refers to someObject.

Writing Python scripts in
“Script (Python)” objects

Example Script (Python) that
publishes context

• Page templates are used to implement all of
the web pages in Plone’s user interface

• You can use Python expressions in TAL
statements in a Zope Page Template object

• put python: before the Python expression

• Useful for calling methods that require
parameters, using boolean operators, accessing
modules like Batch, DateTime

Zope Page Templates with
TAL & TALES

• here is the object the template is applied to;
the same meaning as Script (Python)’s context

• template is the Page template object itself

• container is the folder the template is in

• request is the Zope request object

• user is the Zope user object for the person
requesting the page template

• Refer to Zope Book 2.6 Edition Appendix C

What is available to a ZPT’s
TAL python: expression?

• <b tal:content="python: here.getId()">
 id of the object being rendered

• python: here.getTypeInfo().Title()

• Note: here/getTypeInfo/Title works too,
without the python: prefix

• python: request.get('id', here.getId())

• python: d and d.Title() or 'Untitled'

Some python: expressions

• Actions configure visibility of URLs linking to
functionality in a CMF/Plone site

• Defined in Plone/portal_actions and other tools

• Displayed as tabs, personal bar links, and more

• An action may define a condition expression; if
false, the action is not shown to the user

• The condition is a TALES expression; you can
use python: just as in Zope Page Templates

CMF Actions;
Action conditions

• The State tab should only appear if there are
workflow transitions available

Example from Plone 1.0.5

• object is the object (a Document or
News Item, for example) being rendered,
usually the object the action would apply to

• folder is the folder that object is in

• portal is the Plone portal object, which is the
root of the Plone site

What is available to a CMF
Action condition expression?

• TALES expressions are used throughout
Plone/portal_workflow to set variables’ values,
guard transitions and more

• If a guard expression evaluates to false, the
object the guard is protecting will not be
available to the current user

• You can use python: in these expressions

• An easy way to customize Plone’s behavior

Transition, Variable and
Worklist expressions

• here is the object being acted on

• container is the folder that here is in

• nothing is a reference to None

• user is the current user

• state_change contains the old_state,
new_state, and more

• transition is the transition object being
executed

What is available to a
workflow expression?

• request is the request being processed

• modules contains Python modules you can use

• root is the root folder of the entire ZODB

• status contains the most recent entry in the
workflow history of here

• workflow is the workflow definition being
processed for here

• scripts is the scripts folder in the workflow

What is available to a
workflow expression?

• External methods are not subject to restricted
execution security rules

• Place a Python module, like mystuff.py, in
$(INSTANCE_HOME)/Extensions on
the filesystem

• The module should contain one or more
functions that take a single argument

• Create an External Method object in ZODB
using the ZMI

External Methods

A useful example of an
External Method’s module

• The installGroups function creates groups
in a GroupUserFolder

Creating an External Method

Running an External Method

• Reusable packages of functionality

• Installed in
$(INSTANCE_HOME)/Products

• Initialized in the __init__.py module, can
contain other modules, packages, resources

• Much of Zope’s functionality is packaged in
products

• CMF and Plone are collections of products

Custom Products

• http://python.org/

• http://python.org/doc/2.1.3/

• http://python.org/doc/Intros.html

• http://diveintopython.org/

• http://directory.google.com/Top/Computers/
Programming/Languages/Python/

• http://plone.org/documentation/python

Python Resources

• http://zope.org/Documentation/Books/
ZopeBook/2_6Edition/ScriptingZope.stx

• Zope’s Help System from the ZMI

Script (Python) Resources

• http://zope.org/Documentation/Books/
ZopeBook/2_6Edition/ZPT.stx

• http://zope.org/Documentation/Books/
ZopeBook/2_6Edition/AdvZPT.stx

• http://zope.org/Documentation/Books/
ZopeBook/2_6Edition/AppendixC.stx

• Zope’s Help System from the ZMI

Zope Page Templates
Resources

• http://plone.org/documentation/book/5

CMF Action Resources

• http://www.zope.org/Documentation/How-To/
ExternalMethods

• http://www.zope.org/Members/pbrunet/
ExternalMethodsBasicSummary

• Zope’s Help System from the ZMI

External Method Resources

• http://www.zope.org/Members/hathawsh/
DCWorkflow_docs

• http://plone.org/documentation/book/4

• Zope’s Help System from the ZMI

DCWorkflow Resources

• http://www.zope.org/Documentation/Books/
ZDG/current/Products.stx

• http://sf.net/projects/collective

Product Resources

• irc.freenode.net

• #plone

• #zope

• #python

• http://plone.org/development/lists

• http://www.zope.org/Resources/MailingLists

Help from the community

Any Questions?

Thank you for coming!

Please send your feedback to:
Jim Roepcke <jimr@tyrell.com>

