Make Plone Fast!

Strategies and Tools for Faster Sites

Geoff Davis
geoff @geottdavis.net
Plone Symposium, 2005



Overview

* High level talk

* Goals today:
— Sketch strategies for speeding up your sites
— Point to useful tools

* Will leave details to other references



How fast is your site?

* Simplest measurement: Apache benchmark (ab)
— comes with Apache 2.0 distribution
— simulates lots of users hitting a single page

sequentially and / or simultaneously
— measures pages served / second
® Limitations of ab
— doesn't load associated images, css, js (matters a lot!)
— doesn't know about browser caching, etc

* Better benchmarks feasible with Selenium??



Targets for Speedups

* 3 main areas (in order of decreasing importance):

1) page rendering time in Zope
2) Zope authentication and traversal
3) network latency



General Strategies

* Cache static content in browsers using HTTP headers
— helps: page rendering time, traversal time, latency

* Use a fast proxy cache to serve static content
— helps: page rendering time, traversal time
* Load balancing
— helps: page rendering time, traversal time (under load)
* Optimize your code
— helps: page rendering time
* Cache intermediate code results
— helps: page rendering time



New Ideas

* Smarter browser caching with ETag validation
— helps: page rendering time, traversal time, latency
— more widely applicable than other kinds of browser
caching



Speed Strategy 1: Cache static
content on browsers

®* When users visit a site, content gets stored in their
browser caches

* HTTP headers tell browsers how long to cache
content

* On subsequent page visits, users see locally
cached versions of content rather than hitting your
site again

®* Most usetul tor static content that 1s viewed

frequently (1mages, css, Js, €tc)



HTTP headers

® Understand HTTP headers to do caching right
* Good tutorial at

http://www.web-caching.com/mnot_tutorial/



HTTP header basics

* HTTP 1.0
— Expires, Last-Modified headers:

* browser will cache your content if expiration date is in
future; may cache for some data types (images) if Last-
Modified date 1s in the past

* HTTP 1.1

— Cache-Control headers:
* max-age=N: browser will cache your content for N seconds

— preferable to Expires because doesn't require user's clock to be right

* no-cache, must-revalidate: don't include these!

® Use both HTTP 1.0 and 1.1 headers



Setting HTTP headers

* AcceleratedCacheManager (ships with CMF) can

set cache headers for skin elements
* CMF Caching Policy Manager (ships with CMF)

also useful — more flexible than ACM

* See Definitive Guide to Plone, Chapter 14
— http://docs.neuroinf.de/PloneBook/ch14.rst

— Plone 2.1 takes care of caching for images, js, css
* See HTTPCache in ZMI
* Quick win: configure HTTPCache to increase time
1images/js/css are cached from 1 hour to, say, 1 week



HTTP Headers

* Plone explicitly tells browsers NOT to cache most
content

* Anything using main_template has headers set in
global_cache_headers.pt
(see portal_skins/plone_templates)

®* You may wish to override default headers
— customize global_cache_headers (affects all templates)
— call request. RESPONSE.setHeader 1in body of template
(overrides previous header, affects only template in
question)



Limitations of browser caching

* Effective only 1f content 1s accessed multiple times

— Great for 1mages, css, js that appears on every page
— Less helpful for content

* Users may see stale content
— No way to tell users that their content 1s out of date
— With more work can get around this — will discuss how
later



Brief Aside: Resource Registries

* Very useful new feature in Plone 2.1
— In ZMI, register your javascript and css files with
portal_javascripts and portal_css, respectively
— Be sure to click Save button when you are done
— No longer need to include js, css separately in your
files



Aside: Resource Registries

®* Why is this usetul?

* All js (or css) files get collapsed 1nto a single file
— Reduces number of connections browser must make,
reduces network overhead
* File 1s renamed every time you press Save
— Lets you set very long cache times without worrying
about stale content on client side



Speed Strategy 2: Proxy Caching

* Idea: put a fast but dumb proxy cache in front of
Zope

* Proxy cache serves up static content, keeps load
off Zope

* Zope can tell proxy cache when content expires so
you don't serve up stale content

Proxy Cache

(squid)




Proxy Caches

* Squid
— free, open source; works both on Linux and Windows
(via cygwin)
— http://www.squid-cache.org
— Super fast (~1000 requests/second on mid-range box)

* Microsoft IIS + Enfold Enterprise Proxy
— http://www.enfoldsystems.com/Products/EEP



Proxy Caches

* Apache + mod_proxy / mod_cache
— Lots of documentation about using Apache for caching
— Not recommended!

®* mod_cache 1s buggy:

— intermittently serves up incomplete content
* http://issues.apache.org/bugzilla/show.bug.cg1?71d=32950
* http://issues.apache.org/bugzilla/show.bug.cg1?1d=33512
— bad interaction with Plone's http compression

* Compression enabled by default in 2.0.5; disabled in 2.1
* Set in skins/plone_scripts/enableHTTPCompression.py



Using Squid

* Excellent documentation
available
® (Only need to read a few

chapters, not whole
book)

O'REILLY"




Using Squid

* Easy to set up on Linux
— pre-installed on Fedora Core
— Only a handful of changes needed to detault squid.cont

— Good references:

* http://www.zope.org/Members/JCLawrence/LocalhostSquid
HOWTO/
* http://www.zope.org/Members/htrd/howto/squid



Squid Benefits

* Even without any special setup, squid gives a
sizable performance boost

®* Squid caches your images, css, and js, and
anything else that has HTTP headers that enable
browser caching

* Squid serves up 1mages, css, js instead of Zope
— Squid 1s much faster than Zope
— Lets Zope work on other things



Squid Strategy

® Have 2 URLs for site

— one for users (cached by squid)
— one for administrators (not cached)

* For example, plone.org and members.plone.org

* Reason: we don't want squid to serve authenticated
user the anonymous version of a page and vice

versa



Squid Strategy

* Use CMFSquidTool to keep cached content fresh
— Hooks Zope's object cataloging.
— When an object 1s recataloged, it 1s purged from squid.
— Also works with IIS with Enfold Enterprise Proxy

— Available from Enfold Systems
* http://www.enfoldsystems.com/Products/Open/CMFSquidT
ool



Squid Strategy 2

* Alternative, if using cookie-based authentication
(default for Plone)

®* Much simpler, only need one URL

* Not tested! (But I am confident i1t will work)



Squid Strategy 2

* Idea from Wikipedia admins
* Set Vary: Cookies HTTP header

— Tells squid to serve different pages depending on value
of client's cookies

— Result 1s that squid should distinguish pages from
authenticated vs. non-authenticated users

— Voila, no need for second URL

* Second benefit: can set different Cache-Control
headers for anonymous vs. authenticated users



Speed Strategy 3: Load Balancing

* Zope Enterprise Objects let you do load balancing
— ZEO server = essentially an object database
— ZEO client executes your python scripts, serves up
your content, etc
— ZEO comes with Zope

* Set up multiple ZEO clients on multiple machines

or multiple processors (single instance of Zope
won't take much advantage of multiple processors)



Setting up ZEO

®* You can transform a Zope site into a ZEO site
using the mkzeoinstance.py script in ~Zope/bin

* Change a few lines in ~instance/etc/zope.cont and
~Instance/etc/zeo.cont and you are good to go

* See Definitive Guide to Plone, Chapter 14
— http://docs.neuroinf.de/PloneBook/ch14.rst



Squid + ZEO

®* Main 1dea: give your proxy cache lots of places
from which to get content it can't serve
* Squid can take care of load balancing

* Details:
— http://www.infrae.com/products/silva/auxiliary_docs/a
rchive/squid_notes
— http://www.zope.org/Members/htrd/howto/squid
— http://www.zope.org/Members/htrd/icp/intro



Speed Strategy 4: Optimize Your
Code

* Don't guess about what to optimize — use a profiler

®* Several available

— Zope Profiler:
* http://www.dieter.handshake.de/pyprojects/zope/

— (Call Profiler:
* http://zope.org/Members/richard/CallProfiler

— Page Template Profiler:
* http://zope.org/Members/guido_w/PTProfiler

* Identify and focus on slowest macros / calls



SpeedPack

* Simplest speedup: install SpeedPack and psyco
— Boosts page rendering speed by 10%-40%

— Biggest wins on Windows

— Works well with Plone 2.0.x and Zope 2.7.x
— (Untested with Plone 2.1.x or Zope 2.8.x — there may

be some 1ssues — will be fixed eventually)

— get SpeedPack from Plone SVN collective
* http://svn.plone.org/svn/collective/SpeedPack/trunk/

— get psyco from http://psyco.sourceforge.

— Be sure to read the SpeedPack READM]

net/

= txt!!!



More Caching

* Suppose you find that a portlet 1s your bottleneck
— Calendar portlet, for example, 1s pretty expensive

* How to fix?

* Idea: don't update calendar portlet every hit
— Update, say, every hour
— Cache the result in memory
— Serve up the cached result

* Similar 1dea applies to other possible bottlenecks



RAMCacheManager

* RAMCacheManager 1s a standard Zope product
* Caches results of associated templates / scripts 1n
memory

* Caveats:
— Can't cache objects — only text, ints, floats, etc
— Can't cache macros, only output of macros (portlet 1s a
macro)

* How can we cache the calendar?



Trick: Caching Macro Output

* Idea:

— create a template that renders the macro
— output of template 1s snippet of HTML, 1.e. a string
— cache output of the template



Caching the Calendar

* Step 1: Create a template called cache_calendar.pt:
<metal:macro use-
macro="here/portlet_calendar/macros/portlet” />

* Step 2: In the ZMI, add a RAMCacheManager to
your site root

* Step 3: in the RAMCacheManager, set the
REQUEST variables to
AUTHENTICATED_ USER, leave the others as
defaults (this caches one calendar per user)



Caching the Calendar

* Step 4: Associate cache_calendar.pt with your new
RAMCacheManager. Output of cache_calendar.pt
will now be cached for 1 hour.

* Step 5: In your site's properties tab, replace
here/portlet_calendar/macros/portlet with
here/cache_calendar

®* Voila!

* Use RAMCacheManager to cache output of slow
SCripts, etc.



New Idea: Smarter Browser
Caching with Validation and ETags

* All the browser caching we have discussed so far
has been time-based with no validation

* Browser checks age of cached page and returns
cached page or hits server accordingly

* As aresult, efficacy of this kind of caching 1s
limited

® Browsers are smarter than this — we can do more



Validation and ETags

* With HTTP 1.1 we can force browsers to validate
their cached content (must-revalidate directive)

* Browser checks with the server before serving up
cached content - “Is what I have in my cache
valid?”

* ETags are the key to smart validation

* Server sends out an ETag with a page

* To check freshness, a browser sends the Etag of
the cached page and asks if it's current



ETags

* If page 1s stale, server sends back Status 200 plus
the new page

* If page 1s still good, server sends back Status 304
and an empty page

* Validation 1s cheap and fast. No need for server to
— render the full page
— send the page over the network



ETags

®* Main i1dea for implementation:
— Have your pages supply an ETag header
— ETag 1s an arbitrary string. Make sure it contains

enough 1nfo to tell if a page 1s fresh, e.g.
* a time stamp, the authenticated user, etc

— Before rendering a page, check for the request header
If-None-Match -- this 1s a browser sending an ETag for
your inspection

— If the ETag in the If-None-Match header matches the

current ETag, send a 304 status header and stop.



ETagCacheManager

* Proof of concept of ETag validation 1idea
* Associate 1t with a page template (e.g.
document_view)

* Takes care of ETag generation and checking
®* As a bonus, it includes a fallback RAMCache

* It's in the collective — try 1t out! Note: alpha code

— https://svn.plone.org/svn/collective/ETagCacheManage
V)



