
ZODB Tips and Tricks

Presented at the 2005 Plone Symposium

Chris McDonough
Independent Consultant

Fredericksburg, VA
chrism@plope.com

http://www.plope.com

What Is ZODB

● Persistent Object Store
● Python is the indexing and query language
● Came from BoboPOS, which was written for

Principia.
● Jim Fulton is principal author.
● Tim Peters is now the defacto maintainer.
● Collection of libraries that can be used

outside Zope entirely

How Zope Uses ZODB

● Zope puts an “application” object in the root
node of the ZODB.

● The “application” object is the root of “Zope
space”.

● URL “traversal” in Zope begins at this object
(this object is represented by '/')

ZODB Releases

● ZODB can be used without Zope.
● Tim Peters creates new ZODB releases,

basically timed with Zope releases.
● Find out how to download these ZODB

releases from
http://www.zope.org/Wikis/ZODB/FrontPage

● ZODB 3.2 == Zope 2.7
● ZODB 3.4 == Zope 2.8 / 3.0
● ZODB 3.5 == Zope 2.9 / 3.X

Using ZODB Without Zope

● Zope allows you to use ZODB without
knowing all of these concepts.

● Concepts:
– Storage: Writes bytes representing objects to

disk. Ex: FileStorage, ClientStorage.
– Database: Represents a pool of connections.
– Connection: Provides application code with an

interface to obtain the root object.
– Transaction: a grouping of changes to

persistent data.

How Applications Interact With
ZODB

Persistent Objects

● ZODB uses the Python pickle module to
serialize data. Any type of object that can be
pickled can be stored in ZODB.

● Most builtin Python types can be pickled.
Notable exceptions to that rule include file
objects and function objects.

● To give clues to ZODB about when data is
changed, class instances that are stored in
ZODB must inherit from the Persistent class.

Persistent Instances

● Instances of classes that do not inherit from
Persistent can still be stored in ZODB.
However, if a class instance that does not
inherit from Persistent is stored in ZODB, it
effectively becomes a “write-once” object.
Modifications to the object are not picked up
by ZODB at commit time.

● Instances of any class that inherits from the
Persistent base class are conventionally
said to be “persistent objects”

Using ZODB Directly

● Examples follow
● These examples were developed using the

ZODB release in a recent checkout of Zope
3. Earlier releases operate differently.

● “zopectl debug” is a great way to try out
using ZODB from the Python command
prompt.

Using ZODB Directly (example)

We can create a storage and a database, and store a string in the database.

$ python
>>> from ZODB.FileStorage import FileStorage
>>> from ZODB.DB import DB
>>> import transaction
>>> storage = FileStorage('My.fs')
>>> db = DB(storage)
>>> connection = db.open()
>>> root = connection.root()
>>> # we can begin a transaction now
>>> T = transaction.begin()
>>> # root is a dictionarylike object.
>>> root.keys()
[]
>>> root['myphrase'] = 'Hello World!'
>>> root.items()
[('myphrase', 'Hello World!')]

Using ZODB Directly (ex cont'd)

<cont'd session from previous slide>. If we abort the current transaction, our
change goes away.

>>> transaction.abort()
>>> root.items()
[]

Using ZODB Directly (ex cont'd)

<cont'd session from previous slide>. We can create a persistent instance
and store it in the database:

>>> from persistent.mapping import PersistentMapping
>>> T = transaction.begin()
>>> foo = PersistentMapping()
>>> root['myobject']= foo

Using ZODB Directly (ex cont'd)

<cont'd session from previous slide>. If we commit the current transaction
and reopen the database, we can see that our changes have "stuck".

>>> transaction.commit()
>>> connection.close()
>>> connection = db.open()
>>> root = connection.root()
>>> root.keys()
['myobject']
>>> root['myobject'].__class__.__name__
'PersistentMapping'

Object Graphs

● When you attach an attribute to a persistent
object via “setattr” (a.b = 'c') you are creating
a persistent object graph.

● Data in any ZODB can be used as an object
graph.

● Kind of like a table structure.
● Python is the language you can use to

“query” this object graph. Compare this to a
tradtional relational database, where you
usually query your data using SQL.

Indexing

● Relational databases can use indexes to
speed up queries.

● ZODB has no native indexing mechanism.
● You do the indexing of your data.
● The most popular indexing implementation is

Zcatalog.
● Zope 3's catalog pieces are reportedly much

easier to use outside of the rest of the Zope
framework than are Zope 2's.

ZODB Strengths

● Pure Python (with some C extensions), so
easy to install and use in Python
applications.

● 99% “transparent” serialization of Python
data structures. To store your data, you
don't need to write SQL or create tables
where you declare types.

● Lends itself naturally to hierarchical data
stores. You just make a hierarchy of Python
objects.

ZODB Weaknesses
● Python-only. Hard to tell people unfamiliar

with Python how to get data out of it.
● Indexing is an application, not an intrinsic

part of the database.
● Optimistic concurrency: conflict errors

instead of locks.
● Flexibility. ZODB will allow you to shoot

yourself in the feet and nobody will apologize
afterwards.

● Not very efficient at storing large binary
content (most databases aren't).

Recent Improvements to ZODB

● ZODB 3.3+ (Zope 2.8+) has many
improvements over older versions:
– Multiversion concurrency control (MVCC).

Eliminates certain classes of performance-
sapping conflict errors.

– Can now persist “new-style” classes (classes
which inherit from object).

– 3.4+ has “savepoints” which are sort of like mini-
transactions.

Coming Improvements to ZODB

● Blobs
– ctheune-blobsupport-branch in SVN has code

which makes “blobs” (large binary objects) a
standard part of ZODB. More efficient than
storing data in pickles. Slated to coincide with
the release of Zope 2.9.

● (Zope-only) ZODB connection policies
– Multiple connection pools. Zope decides which

pool to use based on, perhaps, request
parameters like user-agent (spiders, etc).

Improving ZODB Performance
Now

● Check your ZODB database cache-size
setting in zope.conf or zeo.conf. How big is
big enough? As big as you can make it
without causing your machine to swap.

● There is one ZODB cache per connection
(ergo, Zope has more than one cache).

● If you use ZEO, experiment with the ZEO
ClientStorage's cache-size setting too.

● Try DirectoryStorage, which doesn't keep a
large index mapping in RAM.

Improving ZODB Performance
Now

● If you use ZEO with persistent cache files,
you may want to try tweaking the server's
invalidation-queue-size if the connection
between your ZEO server and your clients is
less than reliable or if you frequently take
your clients up and down.

Improving ZODB Performance
Now (cont'd)

● Actually not many knobs to tweak in ZODB
that effect performance other than cache
sizes.

● The most important optimization you can
perform is to write efficient code.

● Unfortunately, this is also the hardest way to
optimize, because you need to manage all
the details.

● No silver bullet, sorry.

Specific Coding
Recommendations

● When writing code that accesses many
persistent objects serially during the course
of a single transaction, try calling the
cacheMinimize on the connection object
every, N iterations. Has potential to reduce
memory usage.

Specific Coding
Recommendations (cont'd)

● Use efficient data structures:
– Learn about Btrees. If you have a lot of data in a

Python dictionary or list, consider using a Btree
or TreeSet instead.

– Don't store large strings as single attributes of a
persistent object. Break large strings up across
many separate persistent objects or use a “blob”
implementation to push large strings out to the
filesystem as files.

Specific Coding
Recommendations (cont'd)

● Avoid concurrent writes to the same
persistent objects when possible. Counters
are the canonical example of this but high-
volume concurrent editing of content has the
same effect.

● Use a relational database for what it's good
for (search speed “cheaper”, system
agnosticism, endless tuning knobs).

How to Get Involved

● Subscribe to the zodb-dev@zope.org mailing
list.

● Report bugs and feature requests to the
Zope “collector” using the topic “Database”.

● Be nice to Tim.
● Hire ZODB developers to get you the

features you want.

Fin

THANKS!

