Z0ODB Tips and Tricks

Presented at the 2005 Plone Symposium

Chris McDonough
|ndependent Consultant
Fredericksburg, VA
chrism@pl ope.com
http://www.plope.com

I What Is ZODB

* Python is the indexing and guery language

e Came from BoboPQOS, which was written for
Principia.

* Jim Fulton is principal author.

* Tim Peters Is now the defacto maintainer.

e Collection of libraries that can be used
outside Zope entirely

I * Persistent Object Store

How Zope Uses ZODB

e Zope puts an “application” object in the root
node of the ZODB.

* The “application” object is the root of “Zope
space”.

* URL “traversal” in Zope begins at this object
(this object Is represented by '/')

I Z/0ODB Releases

* Tim Peters creates new ZODB releases,
basically timed with Zope releases.

* Find out how to download these ZODB
releases from
http://www.zope.org/Wikis/ZODB/FrontPage

e /ODB 3.2 == Zope 2.7

e Z/ZODB 3.4 == Zope 2.8/ 3.0

e ZODB 3.5 ==Zope 2.9/ 3.X

I e ZODB can be used without Zope.

Using ZODB Without Zope

e Zope allows you to use ZODB without
knowing all of these concepts.

e Concepts:

- Storage: Writes bytes representing objects to
disk. Ex: FileStorage, ClientStorage.

- Database: Represents a pool of connections.

- Connection: Provides application code with an
Interface to obtain the root object.

- Transaction: a grouping of changes to
persistent data.

I How Applications Interact With
| ZODB

Persistent Objects

e ZODB uses the Python pickle module to
serialize data. Any type of object that can be
pickled can be stored in ZODB.

* Most builtin Python types can be pickled.
Notable exceptions to that rule include file
objects and function objects.

* To give clues to ZODB about when data is
changed, class instances that are stored In
Z0DB must inherit from the Persistent class.

I Persistent Instances

Persistent can still be stored in ZODB.
However, if a class instance that does not
iInherit from Persistent is stored in ZODB, it
effectively becomes a “write-once” object.
Modifications to the object are not picked up
by ZODB at commit time.

* [Instances of any class that inherits from the
Persistent base class are conventionally
said to be “persistent objects”

I e Instances of classes that do not inherit from

Using ZODB Directly

* Examples follow

* These examples were developed using the
Z0ODB release In a recent checkout of Zope
3. Earlier releases operate differently.

e “zopectl debug” Is a great way to try out
using ZODB from the Python command
prompt.

Using ZODB Directly (example)

We can create a storage and a database, and store a string in the database.

$ python

>>> from ZODB.FileStorage import FileStorage
>>> from ZODB.DB import DB

>>> import transaction

>>> storage = FileStorage('My.fs')
>>> db = DB(storage)

>>> connection = db.open()

>>> root = connection.root()

>>> # we can begin a transaction now
>>> T = transaction.begin()

>>> # root 1s a dictionary-like object.
>>> root.keys()

L]

>>> root[' myphrase'] = 'Hello World!'
>>> root.items()

[(‘'myphrase’, 'Hello World!")]

I Using ZODB Directly (ex cont'd)

<cont'd session from previous slide>. If we abort the current transaction, our
I change goes away.

>>> transaction.abort()
>>> root.1items()

[]

I Using ZODB Directly (ex cont'd)

<cont'd session from previous slide>. We can create a persistent instance
I and store it 1n the database:

>>> from persistent.mapping import PersistentMapping
>>> T = transaction.begin()

>>> foo = PersistentMapping()

>>> root[' myobject'|= foo

Using ZODB Directly (ex cont'd)

<cont'd session from previous slide>. If we commit the current transaction
and reopen the database, we can see that our changes have "stuck".

>>> transaction.commit()

>>> connection.close()

>>> connection = db.open()

>>> root = connection.root()

>>> root.keys()

['myobject']

>>> root['myobject'].__class__._ name
'PersistentMapping’

I Object Graphs

object via “setattr” (a.b = 'c') you are creating
a persistent object graph.

e Data in any ZODB can be used as an object
graph.

* Kind of like a table structure.

* Python Is the language you can use to
“gquery” this object graph. Compare this to a
tradtional relational database, where you
usually qguery your data using SQL.

I * When you attach an attribute to a persistent

I Indexing

* Relational databases can use indexes to
I speed up queries.
e ZODB has no native indexing mechanism.
* You do the indexing of your data.
* The most popular indexing implementation is
Zcatalog.
e Zope 3's catalog pieces are reportedly much
easier to use outside of the rest of the Zope
framework than are Zope 2's.

I Z0ODB Strengths

* Pure Python (with some C extensions), so
I easy to install and use in Python
applications.

* 99% “transparent” serialization of Python
data structures. To store your data, you
don't need to write SQL or create tables
where you declare types.

* Lends itself naturally to hierarchical data
stores. You just make a hierarchy of Python
objects.

Z0DB Weaknesses

* Python-only. Hard to tell people unfamiliar
with Python how to get data out of it.

* [ndexing Is an application, not an Intrinsic
part of the database.

e Optimistic concurrency: conflict errors
iInstead of locks.

e Flexibility. ZODB will allow you to shoot
yourself in the feet and nobody will apologize
afterwards.

* Not very efficient at storing large binary
content (most databases aren't).

I Recent Improvements to ZODB

I e ZODB 3.3+ (Zope 2.8+) has many

Improvements over older versions:

— Multiversion concurrency control (MVCC).
Eliminates certain classes of performance-
sapping conflict errors.

— Can now persist “new-style” classes (classes
which inherit from object).

- 3.4+ has “savepoints” which are sort of like mini-
transactions.

Coming Improvements to ZODB

* Blobs

- ctheune-blobsupport-branch in SVN has code
which makes “blobs” (large binary objects) a
standard part of ZODB. More efficient than
storing data in pickles. Slated to coincide with
the release of Zope 2.9.

* (Zope-only) ZODB connection policies

— Multiple connection pools. Zope decides which
pool to use based on, perhaps, request
parameters like user-agent (spiders, etc).

I Improving ZODB Performance
I Now

* Check your ZODB database cache-size
setting in zope.conf or zeo.conf. How big Is
big enough? As big as you can make it
without causing your machine to swap.

* There is one ZODB cache per connection
(ergo, Zope has more than one cache).

* |f you use ZEO, experiment with the ZEO
ClientStorage's cache-size setting too.

* Try DirectoryStorage, which doesn't keep a
large index mapping in RAM.

I Improving ZODB Performance
I Now

* |f you use ZEO with persistent cache files,
I you may want to try tweaking the server's
iInvalidation-queue-size if the connection
between your ZEO server and your clients is

less than reliable or if you frequently take
your clients up and down.

I Improving ZODB Performance
I Now (cont'd)

* Actually not many knobs to tweak in ZODB
I that effect performance other than cache

Sizes.

* The most important optimization you can
perform is to write efficient code.

e Unfortunately, this Is also the hardest way to
optimize, because you need to manage all
the detalls.

* No silver bullet, sorry.

I Specific Coding
I Recommendations

* When writing code that accesses many
I persistent objects serially during the course
of a single transaction, try calling the
cacheMinimize on the connection object
every, N iterations. Has potential to reduce

memory usage.

I Specific Coding
I Recommendations (cont'd)

* Use efficient data structures:

I - Learn about Btrees. If you have a lot of data in a
Python dictionary or list, consider using a Btree
or TreeSet instead.

- Don't store large strings as single attributes of a
persistent object. Break large strings up across
many separate persistent objects or use a “blob”
Implementation to push large strings out to the
filesystem as files.

Specific Coding
Recommendations (cont'd)

 Avoid concurrent

writes to the same

persistent objects when possible. Counters

are the canonical

example of this but high-

volume concurrent editing of content has the

same effect.
e Use arelational ©
for (search speec

agnosticism, end

atabase for what it's good
“cheaper”, system
ess tuning knobs).

I How to Get Involved

list.

e Report bugs and feature requests to the
Zope “collector” using the topic “Database”.

* Be nice to Tim.

* Hire ZODB developers to get you the
features you want.

I * Subscribe to the zodb-dev@zope.org mailing

Fin

THANKS!

